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Conservation law for multimoded nonlinear optical waveguide interactions
and its physical interpretation

David R. Rowland
School of Mathematics and Statistics, University College, The University of New South Wales, Australian Defence Force Aca

Canberra, Australian Capital Territory 2600, Australia
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The swapping of power between the modes of cw waves in lossless nonlinear optical waveguides always
admit two conserved quantities, the total power and one other, which is sometimes identified as a Hamiltonian.
We show that a general formulation of this Hamiltonian is in fact the weak guidance limit for cw waves of a
more general conservation law. We make the link between this more general conservation law and the con-
servation of ‘‘wave’’ momentum, where wave momentum is a combination of both real momentum and
so-called pseudomomentum. This allows us to interpret the conserved Hamiltonian in physical terms.
@S1063-651X~99!03405-4#

PACS number~s!: 03.50.De, 42.65.Tg, 46.05.1b
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I. INTRODUCTION

Few mode nonlinear optical waveguide devices have
ceived considerable attention in recent years because of
potential application as very high speed switches in comm
nications networks~see Refs.@1–17#, for example!. Of con-
siderable importance in the theoretical analysis of such
vices are the conserved quantities of the system, as
allow the dimension of the mathematical problem to be
duced, so that a few, or even a single differential equation
integration leads to a closed-form solution for the dynami
path of the system in its phase space. For cw interaction
lossless devices, conserved power is always one of the
stants of motion for example, and its physical interpretat
in terms of the conservation of energy is obvious. In multip
frequency interactions, the Manley-Rowe relations also p
vide constants of motion, whose physical interpretation is
terms of conserved photon numbers.

Apart from conserved total power, and the Manley-Ro
relations when they are applicable, there is always ano
conserved quantity for cw multimode interactions in a lo
less waveguide@18#. This constant either ‘‘just comes out o
the equations’’@3–10#, or is formulated as a ‘‘Hamiltonian’’
H @11–15# ~though not to be confused with the classic
mechanics Hamiltonian of total energy!. Despite its wide-
spread use however, the precise physical interpretatio
this constant has never been fully investigated, though it
been suggested to be related to stored energy@17,19#, mo-
mentum@16,20,21#, and momentum flow@18# by various au-
thors. A primary purpose of this paper therefore, is to ans
definitively the question of the proper physical interpretat
of H. In doing so, we will also show that this constant fo
lows from a more general conservation law derivable direc
from Maxwell’s equations without recourse to coupled mo
formalism. For simplicity, we shall limit our analysis to th
case of an ideal Kerr law medium when third harmonic g
eration can be neglected, though the final interpretation
believed to be completely general.

For the case under discussion, the Hamiltonian cons
of motion can be written in the general form@18#
PRE 591063-651X/99/59~6!/7141~7!/$15.00
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NL
•Et* 1Pt

NL*•Et&dA ~1!

for waveguides translationally invariant in thez direction. In
this equation,v0 is the angular frequency of the fields,bk is
the linear propagation constant of thekth mode,Pk(z) is the
power in thekth mode at waveguide positionz, the super-
script asterisk denotes complex conjugate,Pt

NL is the induced
nonlinear polarization due to the transverse partEt of the
total electric field, and the angled brackets indicate a suita
time average.

In the next section, we show directly from Maxwell’
equations thatH is the weak guidance limit for cw waves o
a more general conservation law. In Sec. III, we then sh
that this more general conservation law is in fact thez com-
ponent of the conservation law for ‘‘wave momentum’’ in
rigid dielectric. This then allows us to answer the question
the proper physical interpretation ofH.

II. GENERAL CONSERVATION LAW

A. General theory

For our purposes, we need Maxwell’s equations for
electric and magnetic fieldE andH for charge free nonmag
netic stationary media ~e.g., optical fibers/dielectric
waveguides!. These are given by

“3E52
]B
]t

, ~2a!

“3H5
]D
]t

, ~2b!

“•D50, ~2c!

“•B50, ~2d!

where

B5m0H, ~3a!
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D5e0E1P, ~3b!

andD is the total displacement,B is the total magnetic flux,
P is the total polarization,m0 is the permeability of free
space ande0 is the permittivity of free space.~Note that we
use script letters to denote thereal vector field variables and
later on we will introduce normal text letters for the fie
variables when we rewrite them in complex form. This d
ferentiation between the real and complex forms of the fi
variables is necessary because we will be dealing with n
linear dielectrics.!

We use as our ansatz the knowledge that the differen
form of conservation laws for continuously distributed~in
the continuum limit! vector quantities, such as momentu
have the general form

]

]t
~vector current density!1“•~ tensor!50 ~4!

where for momentum, the tensor is a momentum flux den
plus stress tensor.

Considering Maxwell’s equations, we find that the ob
ous candidates for a](something)/]t for our desired conser
vation law include](e0E3B)/]t, ](P3B)/]t and ](D
3B)/]t. Further investigations of each of these candida
reveals that it is the](D3B)/]t possibility which leads to
the desired conservation law as we will now show.

Using the product rule to expand](D3B)/]t and then
substituting from the Maxwell equations~2a! and ~2b! leads
to

]

]t
~D3B!5~“3H!3B1~“3E!3D. ~5!

To get Eq.~5! looking more similar to Eq.~4!, we use the
vector/tensor identity Eq.~A5! from Appendix A to rewrite
the right-hand side of Eq.~5! in terms of divergences an
other quantities. Additionally using Eq.~3a! and the Max-
well Eqs.~2c! and ~2d!, results finally in the identity:

]

]t
~D3B!1“•T5

1

2
E•~“D!2

1

2
D•~“E! ~6a!

[
1

2
E•~¹P!2

1

2
P•~¹E!, ~6b!

where

T5
1

2
I ~E•D1H•B!2ED2HB ~7!

is the negative of the Maxwell stress tensor@22# and the
spatial part of the Minkowski energy-momentum tensor@23#.

For the standard case of a homogeneous, dispersion
linear medium,D5eLE ~where eL is the constant linea
dielectric permittivity of the medium!, and the right-hand
side of Eq.~6! is identically zero, thus giving the ‘‘momen
tum’’ conservation law of Minkowski@23#. However, in gen-
eral, Eq.~6! does not fit the form of Eq.~4!, and so is not a
conservation law but a ‘‘balance’’ law.
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B. An important special case

In a nonhomogeneous dispersion-free linear medium~for
which D5eLE but now eL is a function of position!, the
right-hand side of Eq.~6! reduces to (1/2)E•E(¹eL). It is
the presence of this term in“eL which prevents Eq.~6! from
being a conservation law in general.~We note in anticipation
at this point, that the requirement that the medium be hom
geneous for a ‘‘balance’’ law to become a conservation l
is a hallmark of something which has been dubbed pseu
momentum or quasimomentum. We postpone a discussio
pseudomomentum to Sec. IIIA.!

A conservation law can still be obtained from Eq.~6! for
a special, though practically important, class of nonhomo
neous media, however—namely, waveguides which are
form in thez direction. For such waveguides, thez compo-
nent of Eq.~6! integrated over the infinite cross section
the waveguide will yield a conservation law, even when t
effects of dispersion and nonlinearity are accounted for,
we will now show.

First we breakD into linear and nonlinear parts, i.e.,D
5DL1PNL, wherePNL is the nonlinear part of the polar
ization density vector. Using Eq.~7!, this allows“•T in Eq.
~6! to be split into linear and nonlinear parts as follows:

“•T[“•TL1
1

2
PNL

•~¹E!1
1

2
E•~“PNL!2“•~EPNL!,

~8!

where we have also used Eq.~A3b!. Substituting this result
into Eq.~6a!, taking the dot product withẑ and then integrat-
ing the result over the infinite cross sectionA` of the wave-
guide, we get

E
A`

dAF ]

]t
~Dt3Bt!• ẑ1

]

]z
~Tzz

L 2EzP z
NL!1PNL

•

]E
]z

1
1

2
DL

•

]E
]z

2
1

2
E•

]DL

]z G50, ~9!

where the subscriptt represents the transverse part of t
field, ẑ is a unit vector in thez direction, and we have use
the results@a•(¹b)#• ẑ[a•]b/]z, and for bound fields~i.e.,
fields that go to zero at infinity! the two-dimensional~2D!
divergence theorem gives that

E
A`

dA ẑ•~¹•T!5E
A`

dA
]Tzz

]z
, ~10!

whereTzz is thezz component ofT.
In order to determine the effects of dispersion~we take

account of dispersion inDL, but neglect dispersion inPNL

@24#!, we next assume that the time dependence inE can be
separated into a rapidly varying part with angular frequen
v0 and a slowly varying envelope functionE so that

E~r ,t !5E~r ,t !e2 iv0t1E* ~r ,t !eiv0t, ~11!

where

E~r ,t !5
1

2pE0

`

dv Eve2 i ~v2v0!t ~12!



an

w

E
ee

ng

in-
th

ta

xi

e
tri
ia

e

x-
un-
et

n
in

her

r

sti-

-

Eq.
ode
res-
ver

hat

PRE 59 7143CONSERVATION LAW FOR MULTIMODED NONLINEAR . . .
and similar expressions also apply to all the other field qu
tities.

Replacing all fields in Eq.~9! by their expanded forms
@i.e., by Eq.~11! or its equivalent# and taking a suitable time
average@25#, we end up with the following conservation la
for a cubic nonlinear medium:

]G
]t

1
]T
]z

50, ~13!

where the scalars

T5E
A`

dAF ^Tzz
L &2Ez* Pz

NL2EzPz
NL*

1
1

4
~PNL

•E* 1PNL*•E!G , ~14a!

G5E
A`

dAF ~Dt* 3Bt1Dt3Bt* !• ẑ

1
i

2

]eL

]v S E•
]E*

]z
2E* •

]E

]z D G , ~14b!

and

^Tzz
L &5Re$Et•Dt

L* 1Ht•Bt* 2EzDz
L* 2HzBz* %, ~14c!

where Re denotes the real part and we have also used
~B2! and ~C4! from the appendixes to rewrite the last thr
terms on the left-hand side of Eq.~9!.

Note that in the linear limit for a single mode propagati
down a uniform dielectric waveguide, Eqs.~13! and ~14!
reduce to the results found by Haus and Kogelnik@26#. They
also reduce to the results found by Nelson@27# and Loudon
et al. @28# for an electromagnetic wave propagating in a l
ear homogeneous medium. To compare with analyses
have ignored dispersion, just set]eL/]v[0 in Eq. ~14b!.

C. CW limit

For a cw wave, the field envelope quantities are cons
in time, and so the conservation law given by Eq.~13! re-
duces to the ‘‘constant of motion’’

T5const, ~15!

whereT is still given by Eq.~14a!. Note that this result is
still at this point completely general and free from appro
mations apart from the assumptions that the waveguide
lossless, translationally invariant, and composed of an id
Kerr law material. We have also assumed that electros
tion, magnetostriction, third harmonic generation, and rad
tion fields may be neglected.

D. Constant of motion in terms of the linear modes
of the waveguide

If we now considerPNL to be a small perturbation to th
linear waveguide, then we can expand the total fields@given
by expressions such as Eq.~11!, but where now the field
-
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envelope quantities are constants in time# in terms of the
modes of the unperturbed~linear! waveguide as follows
@29,30#:

Et5(
j

ajet j~x,y!eib j z, ~16a!

Ht5(
j

ajht j~x,y!eib j z, ~16b!

Ez5(
j

n2

ñ j
2

ajez j~x,y!eib j z, ~16c!

Hz5(
j

ajhz j~x,y!eib j z, ~16d!

whereaj is the amplitude of thej th modal field which has a
propagation constantb j , and we have split the linear~un-
perturbed! waveguide modal fieldsej5et j1ez jẑ and hj

5ht j1hz jẑ, into their transverse~subscriptt) and longitudi-
nal ~subscriptz) components. Note that since we have e
panded the transverse parts of the fields in terms of the
perturbed modal fields~since those fields form a complete s
for the total transverse field! in order for the longitudinal
component ofE to be consistent with both this expansio
and Maxwell’s equations, it is not given by an expansion
terms of the unperturbed longitudinal modal fields, but rat
by the modified form shown in Eq.~16c! @29#. Thus in Eq.
~16c!, n(x,y) is the linear~unperturbed! refractive index of
the waveguide whilstñ j (x,y,z) is the perturbed refractive
index experienced by modej, i.e., ñ j depends on the powe
in each of the modes through the nonlinearity.

If we write ñ j
25n21dnj

2 , wherednj
2/n2!1, then the per-

turbed waveguide modal displacement fieldd̃z j

[e0n2(n2/ñ j
2)ez j.dz j2e0dnj

2ez j , where dz j5e0n2ez j is
the unperturbed waveguide modal displacement field. Sub
tuting the modal expansions given in Eqs.~16! into the^Tzz

L &
part of Eq. ~14a! for T and using the approximation intro
duced above, we find that

T.E
A`

dAF(
j

uaj u2 Re$et j•dt j* 1ht j•bt j* 2ez jdz j* 2hz jbz j* %

2Ez* Pz
NL2EzPz

NL*1
1

4
~PNL

•E* 1PNL*•E!

1~ terms indn2 and the longitudinal

fieldsez j and dzk!G . ~17!

Rather amazingly, the expression in curly brackets in
~17! is simply a sum over modes because the mixed m
terms that might have been expected to appear in this exp
sion can be shown to evaluate to zero when integrated o
the infinite cross section of the waveguide@31#.

We now recall that several authors have shown t
@30,32,33#
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E
A`

dAuaj u2 Re$et j•dt j* 1ht j•bt j* 2ez jdz j* 2hz jbz j* %

5b j Pj /v0 ,

wherePj is the power carried by thej th mode, and so sub
stituting this result into Eq.~17! and then taking the weak
guidance limit by neglecting all the longitudinal fields, w
find thatT reduces to the HamiltonianH of Eq. ~1!. We thus
see that the conserved HamiltonianH is the weak guidance
limit for cw waves of the more general conservation la
given by Eq.~13!.

E. An important conceptual point

We now turn to an important conceptual point. Althou
in the end we have neglected the longitudinal field com
nents, they were absolutely essentialin determining that
^Tzz

L & is the differencebetween the stored energies per u
length in the transverse and longitudinal modal fields and
the sum. ThuŝTzz

L & cannot be interpreted as a stored ene
term as some authors have done@17,19#, but rather it is a
wave momentum flow term@26#. We now turn to the deter
mination of the physical interpretation of the general cons
vation law given by Eq.~13!, and hence to the proper phys
cal interpretation of the HamiltonianH.

III. PHYSICAL INTERPRETATION

We have shown to this point that a canonical form of t
conserved ‘‘Hamiltonian’’ frequently used in the study
few-mode interactions in weakly guiding nonline
waveguides does in fact follow from a more general cons
vation law which we have derived from manipulations
Maxwell’s equations. These manipulations, however, le
unanswered the question of what precisely is the pro
physicalinterpretation of the conserved quantity. It is to th
question that we now turn. Although the conservation l
given by Eq.~13! was derived assuming a stationary, rig
dielectric, in order to appreciate its physical meaning,
must first consider an elastic~deformable! medium and then
take the limit as this elastic medium becomes rigid.

A. Some general concepts

Our system comprises interacting matter and electrom
netic subsystems. Many of the key ideas needed for the
derstanding of the physical meaning of the conservation
given by Eq. ~13!, however, are dealt with elegantly an
more simply in a paper by Herrmann@34# in a general dis-
cussion of the simpler case of an elastic medium alone
summary, the key results from this discussion of elasto
namics from the Lagrangian perspective are as follows.~i!
The Euler-Lagrange equations of motion may be conside
to be a balance law for ordinary momentum,~ii ! the time
derivative of the Lagrangian density leads to a balance
for energy, and~iii ! the space derivatives of the Lagrangi
density leads to a balance law for so-called pseudomom
tum. From these balance laws, it follows that moment
conservation is a consequence of the homogeneity of sp
energy conservation results if the Lagrangian density is
plicitly independent of time, and pseudomomentum is c
-
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served if the Lagrangian density is explicitly independent
the material coordinates, i.e., if the medium is homogeneo
Extending these ideas to our matter-field system, to
matter-plus-electromagnetic field momentum can be
pected to be always conserved. Total pseudomomen
however, will only be conserved if the medium is homog
neous, which, in the case of ourz-invariant waveguide,
means that only thez component of pseudomomentum w
be conserved. Since the conservation law derived above
applies in thez direction, it follows from the above discus
sion that pseudomomentum can be expected to play a pa
its physical interpretation.

Since pseudomomentum is not a generally familiar c
cept in the optics community, and there is not complete c
sensus on its definition in the literature, it is worth saying
few more words about it. As its name suggests, pseudo
mentum is not a real momentum, though it has the sa
dimensions and in many ways behaves as real momen
does—for example, obeying conservation laws a
Newtonian-like balance laws involving pseudoforc
@34,35#. The most familiar example of pseudomomentum
the ‘‘momentum’’ \k carried by a phonon in a crystal@36#,
thus indicating the general importance of the concept. T
reader is warned, however, that there are two alterna
definitions of pseudomomentum in the literature. The o
adopted in this paper, is that pseudomomentum is a pu
material frame~Lagrangian coordinates! quantity as pro-
posed in Refs.@27,34,35,37#. Other authors however, us
relative displacement as their matter field variable@38–41#.
This mixes together spatial frame and material frame co
dinates, and so mixes together momentum and pseudo
mentum as defined by the convention we follow.

B. Wave momentum

The ‘‘momentum’’ associated with an electromagne
wave propagating in a dielectric medium is a topic which h
received considerable attention over the years~see, for ex-
ample, the review papers by Robinson@42# and Brevik@23#,
the book by Penfield and Haus@43#, and the following recent
articles@27,28,37–39,44#! though the paper by Nelson@27#
contains all the results we shall need.~The interested reade
is also directed to Ref.@28#, which extends the work of Nel-
son @27# to include the effects of loss, but also uses a mu
simpler model for the material medium to derive the desi
results.!

In Ref. @27#, Nelson first considers the interaction of a
electromagnetic wave with a completely general homo
neous elastic dielectric, and derives from the Lagrangian p
spective the conservation laws of momentum and pseudo
mentum for such a system. He then notes that for an opt
frequency wave in a material medium, there is no deform
tion of the medium. In this special case, the distinction b
tween spatial and material frames vanishes. Conseque
momentum~an inherently spatial~local or Eulerian coordi-
nates! frame quantity! and pseudomomentum~an inherently
material frame quantity! can be added to give a new con
served quantity which he has called ‘‘wave momentum
Neglecting a magnetization term, the conservation law
wave momentum is given by@27#
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]

]t SD3B2(
n

mnẏn
•~¹yn! D 1¹•~T1s!50, ~18!

whereT is given by Eq.~7!, and the tensors is given by

s5I S (
n

mn

2
~ ẏn!22r0S1

1

2
P•ED . ~19!

In these two equations,r0 is the mass density~per unde-
formed volume! of the crystal,mn is the mass density~per
undeformed volume! associated with then-internal coordi-
nateyTn, the dot represents a material time derivative, andS
is the stored energy per unit mass. TheN21 (n
51,2, . . . ,N21) internal coordinatesyTn arise because
there are assumed to beN particles per primitive unit cell.
These internal coordinates are defined as displacem
invariant coordinates so that no~ordinary! momentum is as-
sociated with them. The link betweenyTn andyn is given by
yTn[Yn1yn, where Yn is the value ofyTn in the natural
state.

To complete the analysis, it now only remains for us
show that Eq.~18! is in fact equivalent to Eq.~6b!. Compar-
ing the two equations, we thus see that we must show th

]

]t S (n
mnẏn

•~¹yn! D 2¹•s[
1

2
E•~¹P!2

1

2
P•~¹E!.

~20!

This can be done by expanding the time and space de
tives of the terms on the left-hand side of this equation a
noting that for a stationary homogeneous medium in the
sence of deformation@27#: ¹yn5¹yTn; P5(nqnyTn, where
qn is the charge density associated with the internal coo
nate yTn, r0S is a function ofyTn only, and the internal
motion equation~keeping only terms to dipole order! is
given bymnÿn52](r0S)/]yTn1qnE.

This then proves that Eq.~6b! is the conservation law fo
wave momentum~a sum of real momentum and pseudom
mentum! for a homogeneous nondeforming dielectric. Sin
uniform dielectric waveguides are only homogeneous in
z direction, only thez component of this conservation la
~integrated over the infinite cross section of the wavegui!
therefore remains a conservation law for uniform dielec
waveguides, as was shown in deriving Eq.~13! in Sec. IIB.

The proper physical interpretation of the HamiltonianH
that we started the paper with is now clear. It is the co
servedwave momentum flow or momentum flux~i.e., the
wave momentum flux density integrated over the infin
cross section of the waveguide! for cw waves in the weak
guidance limit. Given this interpretation, it is clear that t
first term inH, i.e., ( jb j Pj /v0, is the linear wave momen
tum flow ~as was shown for a single waveguide mode
@26#!, and the second part, i.e., 1

4 *A`
^Pt

NL
•Et*

1Pt
NL*•Et&dA, is the nonlinear perturbation correction

the linear wave momentum flow. It is this nonlinear corre
tion which couples energy between the linear modes of
waveguide.
nt-

t

a-
d
b-

i-

-
e
e

c

-

-
e

IV. CONCLUSIONS

In this paper, we have extended the conservation law
rived by Haus and Kogelnik@26# for a linear dielectric wave-
guide to the case of a cubically nonlinear waveguide@Eqs.
~13! and ~14!#. We have also established that this new co
servation law has practical as well as theoretical value
showing that it leads, for cw waves interacting at a sin
frequency, to a general form of the previously establish
conserved ‘‘Hamiltonian’’H @Eq. ~1!# @12,18#, for multiple
mode interactions in a weakly guiding, weakly nonline
waveguide. It has been shown thatH does in fact follow
from a general conservation law, and this is expected to b
value in determining the physical basis of conserved qua
ties for waves with time-varying envelopes such as tempo
solitons.

More immediately, establishing thatH follows from a
general conservation law has allowed us to call on the wo
of Nelson and others@27,28,37# to finally resolve the issue o
the proper physical interpretation ofH @45#. To wit, H, as
defined by Eq.~1!, is the conserved wave momentum~ordi-
nary momentum plus pseudomomentum! flow for cw waves
propagating in a uniform (z invariant! waveguide in the ab-
sence of deformation.~The z invariance is required for the
conservation of pseudomomentum in this direction, and
absence of deformation is required so that ordinary mom
tum and pseudomomentum may be added.!

Finally, given the importance ofH in determining the
nonlinear evolution of a system of interacting modes in
nonlinear dielectric waveguide@12,18#, and its interpretation
as conserved wave momentum flow, we have thus veri
~for these types of systems! a comment made by Nelson tha
@27#, ‘‘ . . . wave momentum is a more important quantity
wave interactions than either momentum or pseudomom
tum alone.’’
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APPENDIX A: USEFUL VECTOR AND TENSOR
IDENTITIES

1. Conventions

As there are several different conventions pertaining
the expression of tensor calculus in component form, e
Refs.@26,46#, we state our conventions here to avoid read
confusion and collect the relevant identities consistent w
these conventions below.

For vectorsa andb and second rank tensorT, we define

@a•T# i5ajTji , ~A1a!

@T•a# i5Ti j aj , ~A1b!

@¹a# i j 5
]ai

]xj
[] jai[ai , j , ~A1c!
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@¹•T# i5
]Ti j

]xj
[] jTi j [Ti j , j , ~A1d!

and thus

@¹•~ab!# i5] j~aibj ![~aibj ! , j , ~A1e!

where @* # i denotes thei th component of the argument,] j
[]/]xj , x1[x,x2[y, andx3[z, and the Einstein summa
tion convention for repeated indices is used. Note that us
these conventions

@~a•¹!b# i5~aj] j !bi[ajbi , j ~A2a!

while

@a•~¹b!# i5aj~] ibj ![ajbj ,i ~A2b!

and so are not identical.

2. Identities

Using the conventions and notations defined above, it
be shown that

¹•~a3b!5b•~¹3a!2a•~¹3b!, ~A3a!

¹~a•b!5a•~¹b!1b•~¹a!, ~A3b!

~¹3a!3b5~b•¹!a2b•~¹a!, ~A3c!

¹•~ Ia–b!5~a•¹!b1~b•¹!a2~¹3b!3a2~¹3a!3b,
~A3d!

¹•~ab!5~b•¹!a1~¹•b!a, ~A3e!

whereI is the rank two unit tensor, Eq.~A3d! follows from
Eqs. ~A3b! and ~A3c!, and we note that ¹(a•b)
[¹•(Ia•b).

Now, we want to convert Eq.~5! from the main text into
something that looks similar to Eq.~4!. The answer in free
space is well known and~relatively! uncontentious, so we
can use the fact that the electromagnetic energy-momen
tensor in matter must reduce to the electromagnetic ene
momentum tensor in free space to guide our analysis. T
ansatz means that we are looking for a tensor of the fo
ab2(1/2)Ia–b, which must come from terms of the form
(¹3a)3b. Manipulating Eqs. ~A3c!–~A3e!, it can be
shown that

¹•~ab!2
1

2
¹•~ Ia–b!5~¹3a!3b1~¹•b!a

1
1

2
b•~¹a!2

1

2
a•~¹b! ~A4!
g

n

m
y-
is
m

from which it follows that

~¹3a!3b[¹•~ab!2
1

2
¹•~ Ia–b!2~¹•b!a

1
1

2
a•~¹b!2

1

2
b•~¹a!. ~A5!

APPENDIX B: FORMULA FOR D L

IN A DISPERSIVE MEDIUM

In accordance with usual practice, we assume the follo
ing linear constitutive relation between the Fourier comp
nents ofE andDL:

Dv
L 5eL~v!Ev ~B1a!

.S eL~v0!1~v2v0!
]eL~v0!

]v DEv ,

~B1b!

where in going from Eq.~B1a! to ~B1b!, we have made a
first order Taylor series expansion ofeL(v) aboutv5v0.
Thus

DL~r ,t !5
1

2pE0

`

dvDv
L e2 i ~v2v0!t

.eL~v0!E~r ,t !1 i
]eL~v0!

]v

]E

]t
. ~B2!

APPENDIX C: CUBIC NONLINEARITY

For an intensity dependent nonlinear systems at a sin
frequency, the total~real! third-order polarization is given by

PNL[P~3!5e0x~3!AEEE ~C1!

from which it follows for nonresonant~lossless! electronic
responses for single frequency interactions, that@47#

PNL5e0x~3!~2E•E* E1E•EE* !, ~C2!

wherex (3)5xxxxx
(3) . Thus, since

KPNL
•

]E
]z L 5PNL

•

]E*

]z
1PNL* •

]E

]z
, ~C3!

it follows upon substituting Eq.~C2! for PNL, that

KPNL
•

]E
]z L 5

1

4

]

]z
~PNL*•E1PNL

•E* ![
]

]z K 1

4
PNL

•EL .

~C4!
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